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Study History: Marine Mammal Study 6 (MM6), titled Assessment of the Magnitude, Extent
and Duration of Oil Spill Impacts on Sea Otter Populations in Alaska, was initiated in 1989 as
part of the Natural Resource Damage Assessment (NRDA). The study had a broad scope,
involving more than 20 scientists over a three year period. Final results are presented in a
series of 19 reports that address the various project components. Earlier versions of this report
were included in NRDA Draft Preliminary Status Reports for MM6.

Abstract: In summer 1991, sea otter foraging success and prey composition were determined
by visual observation at 2 sites affected by shoreline oiling during the Exxon Valdez oil spill
and at a non-oiled site in western Prince William Sound, Alaska. Prey species were also
determined by scat analysis at Green Island. Bivalve prey were coliected subtidally at each

~ study site to determine petroleum hydrocarbon concentrations in sea otter prey. The
proportion of successful dives did not differ among sites for adults or between adults and
juveniles. The mean number of prey captured per dive was 1.2 and did not differ among study
sites. Size class of sea otter prey was similar among study sites: >96% of the prey items
were estimated to be <9 cm. Adults differed in the proportion of dives retrieving clams,
crabs, and mussels among study sites. Clams were retrieved on 34%, 61% and 44 % of
successful foraging dives observed at Squirrel, Green, and Montague islands, respectively.
Saxidomus giganteus was the most frequently identified clam species. Mussels and crabs
contributed <20% of the total prey items recovered by otters at each study site. Juvenile sea
otters in the Green Island site had a significantly higher proportion of dives resulting in the
capture of mussels than did adults; no differences were detected in the proportion of dives
resulting in clam or crab, Other species contributed <5% at each study site. Sea otter scat
collected at Green Island contained primarily mussels and clams. Tissue samples of subtidal
sea otter prey from oiled sites did not appear to differ from the non-oiled site in concentrations
of alkanes, aromatics, or unresolved complex mixture.
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EXECUTIVE SUMMARY

In summer 1991, sca otter (Enhydra lutris) foraging success and prey composition were
determined by visual observation at 2 sites affected by shoreline oiling during the Exxon Valdez
oil spill (Squirrel and Green istands) and at a non-oiled site (Montague Island) in western
Prince William Sound, Alaska. Prey species were also determined by scat analysis at Green
Island. Bivalve prey were collected subtidally at each study site to determine petroleum
hydrocarbon concentrations in sea otter prey.

The proportion of successful dives did not differ among sites for adults or between
adults (90%) and juveniles (92%). The mean number of prey captured per dive was 1.2 and
did not differ among study sites. Size class of sea otter prey was similar among study sites:
>96% of the prey items were estimated to be <9 cm.

Adults differed in the proportion of dives retrieving clams (P = 0.01), crabs
(P = 0.03), and mussels (P = 0.03) among study sites. Clams were retrieved on 34%, 61%
and 44% of successful foraging dives observed at Squirrel (n = 833), Green (n = 759), and
Montague (n = 752) islands, respectively. Saxidomus giganteus was the most frequently
identified clam species. Mussels (Myiilis edulis) and crabs (Telmessus spp.) contributed <20%
of the total prey items recovered by otters at each study site. Juvenile sea otters in the Green
Island site had a significantly higher proportion of dives resulting in the capture of mussels
than did adults (P = 0.02); no differences were detected in the proportion of dives resuiting in
clam or crab. Other species contributed <5% at each study site. Sea otter scat collected at
Green Island contained primarily mussels (60%) and clams (46%, n = 253).

Tissue samples of subtidal sea otter prey from oiled sites did not appear to differ from
the non-oiled site in concentrations of alkanes, aromatics, or unresolved complex mixture.
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INTRODUCTION

Following the Exxon Valdez oil spill in March 1989, Prudhoe Bay heavy crude oil
spread on the sea surface and on coastal shores from western Prince William Sound to the
Alaska Peninsula. In Prince William Sound alone, acute mortality of sea otters at the time of
the spill was estimated to be greater than 2,000 otters (Doroff et al. 1993; Garrott et al. 1993).
Potential long-term chronic effects of oiled intertidal and subtidal prey on the sea otter
population are of concern. Marine bivalves are susceptible to the accumulation of petroleum
hydrocarbons from both chronic and acute sources (Blumer et al. 1970; Ehrhardt 1972; Boehm
and Quinn 1977).

Shoreline oiling was observed on approximately 24% of 1,182 miles of coastline
surveyed within Prince William Sound (Exxon Valdez Oil Spill Damage Assessment
Geoprocessing Group 1991). The effect of oil on the abundance of nearshore marine
invertebrate populations is unclear. The concentration and persistence of hydrocarbons present
in tissues of most of these invertebrate species remains unknown.

Sea otters prey on a wide variety of benthic marine invertebrates (Riedman and Estes
1990) and forage in shallow coastal waters (Wild and Ames 1974), which vary widely in
exposure to the open ocean, substrate type, and community composition. Sea otters have high
metabolic demands relative to other marine mammals and can consume 20-25% of their body
weight per day in invertebrate prey (Kenyon 1969; Costa and Kooyman 1984).

Sea otters have occupied southwestern Prince William Sound since at least the early
1950's (Lensink 1962; Garshelis et al. 1986). The sea otter population in the Prince William
Sound spill region was likely near equilibrium density and limited by prey availability before
the oil spill occurred (Estes et al. 1981; Garshelis et al. 1986; Johnson 1987). Sea otters in
this region spent 59% of daylight hours foraging, while otters in recently reoccupied habitats
of eastern Prince William Sound spent only 27% (Garshelis et al. 1986). Therefore, small
differences in abundance of prey or net caloric availability due to heavy oiling in portions of
the southwestern Sound may lead to reduced carrying capacity and delayed recovery of the sea
otter population in this region.

Recovery of sea otter populations may be influenced by several factors. Decreased
food availability caused by oil-related prey mortality or consumption of contaminated prey may
be detrimental. Prey availability in western Prince William Sound may have declined due to
increased mortality of invertebrates at the time of shoreline oiling, or by oil removal activities.
In addition, relative prey availability may have been decreased by sea otters avoiding
invertebrate prey contaminated with petroleum hydrocarbons. However, we lack the baseline
data on abundance and distribution of nearshore invertebrates necessary to estimate a reduction
in prey availability. In addition, the effects of ingesting prey contaminated with petroleum
hydrocarbons on sea otters are unknown.

Our objectives were to determine if sea otter foraging success and prey composition
differed between oiled and non-oiled areas, and to assess hydrocarbon concentrations in sea
otter prey between oiled and non-oiled areas.



METHODS

Study Sites

The study area included sea otter foraging sites at Squirrel, Green, and Montague
islands, in western Prince William Sound, Alaska (Figure 1). Sites were selected on the basis
of two criteria: 1) degree of shoreline oiling (based on Alaska Department of Environmental
Conservation shoreline oiling maps) with Squirrel, Green, and Montague islands representing
heavy (>50% of the beach area covered or penetrated with oil), moderate (10-50% of the
beach area covered or penetrated with oil) and no shoreline oiling, respectively; and 2)
sufficient sea otter densities to obtain foraging data, determined by sea otter survey and capture
data from other spill-related studies. In general, the study area was a female area where
breeding and pup-rearing occurred (Estes et al. 1981; Garshelis 1983; Riedman and Estes
1990) and foraging data were collected on adults and juveniles of both sexes. Sea otter
foraging data were collected in the study area between mid-April and July and subtidal sea
otter prey were collected during August 1991.

Foraging Observations

Visual observations of foraging sea otters were made by trained individuals with the aid
of high-resolution telescopes (Questar Corporation, New Hope, PA) and 10 X 40 binoculars.
Foraging behavior was documented using focal animal sampling (Altmann 1974). A foraging
otter was located and observed until a maximum of 50 identifiable prey items were observed or
until visual contact with the animal was lost or foraging ceased. When possible, data recorded
for each dive included age (adult, juvenile or unknown) and sex of focal animal, number of
prey and relative prey size, dive interval (seconds), surface interval between foraging dives
(seconds), and prey item to lowest identifiable taxon. Prey were classified into one of 5 size
classes (<5 m, >5to <7cm, >7cm to <9cm, >9to <12 cm and 212 cm). Size class of
prey was estimated by observers based on the mean forepaw width (4.5 cm) and mean skull
width (10 cm) for adult sea otters in this region (Johnson 1987, U.S. Fish and Wildlife
Service, unpublished data). Adult animals were categorized as male, independent female or
female with a pup. Small (estimated at <18 kg), dark-headed otters were identified as
juveniles. Foraging dives were classified as successful (prey item captured), unsuccessful (no
prey item captured) or as producing an unknown result (observer could not determine if the
dive was successful or unsuccessful). The locations of foraging sea otters were recorded on a
Geographic Information System coverage map gridded with a Universal Transverse Mercator
projection. Data were collected only during daylight hours and during all tidal cycles.

Scat Analysis

During 20 April to 2 May 1991, 253 sea otter scat samples were examined in the field
along 8.5 km of beach within the Green Island study site (Figure 1). For each scat sample
encountered, the species of prey (when possible) were recorded within each scat. The
estimated percentage that each prey type (mussel, clam, crab, or other) contributed to the
entire scat was categorized as follows: 100, 90, 75, 50, 25, 10, and 5%.
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Collection and Hydrocarbon Analysis of Prey

Collection. At each study site, clam species identified as sea otter prey were collected
and tissues were analyzed for hydrocarbon content. Coordinates of foraging observations were
plotted for each study site. The outermost coordinate locations delineated a polygon over
which a grid of 100-m? plots was laid. Ten 100-m* plots were chosen randomly within each
study site, and SCUBA divers searched for prey within each piot, beginning at the boat anchor.
The boat anchor location was haphazard within each of the plot boundaries. Clams were
recovered using a venturi dredge (Keene Engineering, Northridge, CA). Water depth
averaged 8 m (range, 5-12 m). Clams were brought to the surface in nylon mesh dive bags,
wrapped in chemically cleaned aluminum foil (acetone-and hexane-washed) and frozen whole.
During prey collection, divers attempted to obtain 3 Saxidomus giganteus within each plot.
However, this could not be accomplished in all plots and, where possible, 3 of each clam
species encountered were submitted for analysis. When more than 3 clams of the same species
were retrieved from a single plot, 3 were randomly selected for hydrocarbon analyses. Clams
were thawed in the laboratory and soft tissue was removed (using instruments cleaned with
acetone and hexane) from the shell and placed in chemicaily clean jars, weighed and refrozen.
Samples were shipped to the Geochemical and Environmental Research Group (GERG) at
College Station, Texas, for analysis of the hydrocarbon content. The tissue extraction method
used in the analysis was developed by MacLeod et al. (1985) and modified by Wade et al.
(1988, 1993) and Jackson et al. (1993). Laboratory methodology for the hydrocarbon analysis
for this study was standardized with all Natural Resource Damage Assessment Studies by
GERG (GERG standard operating procedures 8901-8905).

Extraction and purification. Approximately 1 gram (wet weight, x = 1.08+0.17g) of
macerated clam tissue was placed in a centrifuge tube. 100 ml of CH2CI2, 50 g of Na2S04,
and the internal surrogates were added. The tissue was macerated for 3 minutes using a
tissuemizer. The dichloromethane was decanted into a flask. This extraction was repeated two
more times with 100 mi aliguots of CH,CL,. Using a 3-ball Snyder column the CH,Cl, was
concentrated to 10-20 ml then transferred into a concentrator tube and concentrated to 1 ml.
The extract was fractionated by alumina:silica gel open column chromatography. The extract
was sequentially eluted with pentane and pentane:dichloromethane for the aliphatic and
aromatic fractions respectively.

Aliphatic hydrocarbon determination. High resolution, capillary gas chromatography
with a split/splitless injection system and a flame ionization detector (GC/FID) was used to
quantitatively determine the aliphatic hydrocarbons (n-C10 to n-C34, pristane and phytane) and
the unresolved complex mixture (UCM). Analyte amounts were calculated based on methods
of internal standards with concentrations corrected for the surrogate recoveries,

Aromatic hydrocarbon determination. Quantitation of polynuclear aromatic
hydrocarbons (PAH) and their alkylated homologues was performed by gas chromatography
mass spectrometry (GC/MS) in the selected ion monitoring (SIM) mode. Qualitative
identification of target compounds was based on relative retention time criteria supported by
comparison with confirmation ions. The actual sample concentration of each compound was
calculated using the response factor for each analyte and corrected for surrogate recoveries.

Quality assurance. Both the GC/FID and the GC/MS were calibrated using a five point
response curve to show the linear range of the instrument before, during, and after sample
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runs. If the average daily response factors for any analyte exceeded +25 %(aliphatic
compounds) or 135% (aromatic compounds) of the corresponding calibration curve value then
a five point calibration curve must be repeated for that analyte before analysis of samples could
proceed. A method blank, standard reference material (SRM), matrix spike and matrix spike
duplicate (MS/MSD) were analyzed with each batch of samples. If the method blank was
greater than 3x the method detection limit (MDL) then the samples were reextracted and
reanalyzed. Results of SRM analyses were used to establish laboratory control charts. The
average recoveries for all analytes in the MS/MSD must fall between 40 and 120%. All
samples were spiked with surrogates prior to extraction and purification. Corrective action
was taken if surrogate recovery fell outside of 40 and 120%.

Data Analysis

The foraging record is defined in this paper as the foraging data specific to a focal
animal and was used as the sample unit in the analyses of foraging behavior. The sample unit
in the analysis of dive and surface intervals was individual dives.

The percentage of successful dives was determined for all foraging records of adult and
juvenile sea otters having > 10 dives. Dives of unknown resuit were not included in this
analysis. An arcsine transformation of the square-root of the proportion of successful dives
was used to normalize distributions and an analysis of variance (ANOVA). was used to test for

differences in foraging success among sites and between adults and juveniles.
' Number of prey items captured per dive was averaged for each foraging record by site.
Dives resulting in the capture of mussels were excluded from this analysis due to the difficulty
in obtaining accurate counts on a per dive basis. Dives of unknown result were not used in
this analysis. ANOVA was used to test for differences in the number of prey retrieved per
dive among sites.

Mean dive and surface intervals were tested among study sites and prey types (clams,
crabs, and mussels) by a two-way ANOVA for an unbalanced sample.

Foraging records for each focal animal having > 10 foraging dives were summarized
into the proportion of dives resulting in the capture of clams, crabs, or mussels within each
study site. Kruskal-Wallis nonparametric tests were used to determine differences in the
proportion of clams, crabs, and mussels captured among sites for adult sea otters and between
adults and juveniles (sample sizes were sufficient to test age differences only for the Green
Island study site).

Analytical data are always estimates of the concentrations of the compounds being
measured. However, the uncertainties of the estimated concentrations can be assessed. The
minimum concentration of a substance that can be measured and reported with a specified.
statistical confidence that the analyte concentration is greater than zero can be determined and
is termed the method detection limit (MDL). Using spiked oyster {Crassostrea virginica)
tissue samples (n=7) obtained from the Gulf of Mexico, GERG estimated the MDLs of the
hydrocarbon analytes at the 99% confidence level; these are listed in Appendix Table A-1.
Only values above MDL were included in any comparisons or analyses in this paper;
however, all concentrations of individual hydrocarbons in clam tissues above and below the
computed MDL were reported by GERG and are included in Appendix Tables A-2 and A-3.



Hydrocarbon concentrations were reported from GERG in ng/g wet weight for alkanes and
aromatics, and in ug/g wet weight for UCM.

RESULTS

Foraging Behavior

At Squirrel Island, 69 foraging records were observed (68 adults and 1 juvenile).
Thirty-eight foraging records (29 adults and 9 juveniles) were observed at Green Island and 72
foraging records (69 adults and 3 juveniles) were observed at Montague Island.

Sea otters at all sites recovered prey items on 87-92% of their foraging dives and
foraging success did not differ among sites (F = 1.23, P = 0.29) (Table 1). Mean foraging
success rates were 90% (n = 82) for adult and 92% (n = 10) for juvenile sea otters in all
study sites combined and did not differ significantly (F = 0.50, P = 0.48).

Mean number of prey retrieved per dive were 1.2, 1.0, and 1.3 for Squirrel, Green,
and Montague Islands, respectively; differences were not detected among sites (F = 2.19,

P = 0.11). Size class was estimated for 1,867 prey items; the majority of prey items, 96% or
greater, were <9 cm in all sites (Table 1).

Mean dive intervals varied from 43 to 88 seconds, and surface intervals varied from 37
to 48 seconds for all prey types within the study sites. Dive intervals differed significantly for
dives retrieving clams (80-119 seconds), mussels (20-35 seconds), and crabs (63-82 seconds)
among study sites (F = 19.83, P < 0.001), and among prey types (F = 135.92, P < 0.001),
and the interaction between site and prey type also differed (F = 24.16, P < 0.001).

Prey Composition

Adults differed in the proportion of dives resulting in the capture of clams (X* = 9.73,
P = 0.01), crabs (X = 7.03 , P = 0.03), and mussels (X* = 7.21 , P = 0.03) among sites
(Table 2). The median proportion of dives resulting in the capture of clams was higher than
that for mussels or crabs in all study sites for adults and was less {0.29) for the Squirrel Island
than for Green (0.75) or Montague (0.62) isiands. Sample sizes were insufficient to test for
differences in prey composition related to sex or reproductive status. Juvenile sea otters in the
Green Island site captured mussels on a significantly higher proportion of dives than did adults
(X* = 5.73, P = 0.02) (Table 2). Differences between adult and juvenile sea otters were not
detected for the proportion of dives in which clam or crab were captured (in the Green Island
area). Sample sizes were insufficient to test for age class differences of the proportion of dives
resulting in the capture of clams, crabs, and mussels in the Squirrel and Montague island study
sites,

Clams were retrieved on 34, 61, and 44% of successful sea otter foraging dives at
Squirrel (n = 833), Green (n = 759), and Montague (n = 752) islands, respectively (Table 3).
Saxidomus giganteus was the most commonly identified clam in the sea otter diet for all study
sites. Other clam species identified in all study sites were Mya spp. and Protothaca staminea.
Mussels (Mytilis edulis), and crabs (primarily Telmessus spp.) each contributed 20% or less of
the identified species for each study site. Other prey types observed included: limpets
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(Notoacmea spp.), barnacies (Balanus spp.), cockles (Clinocardium spp.), scallops (Chlamys
spp.), sea cucumbers (Cucumaria spp.), fat innkeepers (Echiurus echiurus alaskensis), octopus
(Octopus spp.), sea stars (Pisaster spp.), jingles (Posodesmus spp.), suntlower sea stars
(Pycnopodia helianthoides), sea urchins (Strongylocentrotus spp.), chitons (class
Polyplacophora) and wnicates (class Ascidiacea). These species contributed 5% or less to otter
diets at each study site (Table 3).

Fifty-six percent of the 253 scat samples examined in the Green Island study site
contained more than one prey species (Table 4). Mussels were observed in 153 of 253 (60%)
sea otter scat and clams were observed in 116 of 253 (46%) scat examined. Clam species were
primarily P. staminea and S. giganteus with trace amounts of Humilaria kennerleyi and Gari
californica. Crab and other small invertebrates were found in 19 and 20%, respectively of scat
sampled. Of scats containing a single prey type, 76 contained only mussels, 23 contained only
clams and 13 contained either scallops (Chlamys sp.), snails (Natica sp.), cockles
(Clinocardium sp.), or limpets (Notoacmea scutum).

Prey Hydrocarbon Analysis

A total of 79 prey samples were collected for hydrocarbon analyses. Twenty-five prey
were collected in 7 plots at Squirrel Island; 33 prey in 7 plots at Green Island, and 21 prey in 6
plots at Montague Island. P. staminea (n = 24), Mya spp. (n = 23), and §. giganteus
(n = 20) were most frequently collected. Species composition and mean size are presented in
Table 5. Concentrations of individual hydrocarbon analytes in prey samples are listed in the
Appendix (Table A-2, aliphatics; Tables A-3, aromatics).

Tissue samples of subtidal bivalves obtained from sites which had received heavy to
moderate shoreline oiling in 1989 had no apparent differences in alkane and aromatic
hydrocarbon concentrations and distributions, and UCM concentrations from the site where no
shoreline oiling occurred. The aliphatic hydrocarbons in all the samples showed a pattern
. suggestive of biogenic origins. An odd chain predominance over the n-C,, to n-C,, range with
the highest concentrations for n-C,; and pristane characterize the samples from all three study
areas (Figures 2, 3, 4). The odd:even ratios across the n-C,, to n-C,, range varied from 1.04 -
4.13 (% = 2.5 + 1.98) at Squirrel Island, 0.96 - 6.94 (x = 2.3 + 1.33) at Green Island, and
0.89-2.73 (% = 1.4 + 0.45) at Montague Island. The UCM was low for all three areas;
5.70 + 8.48 uglg, 4.14 £ 10.86 «g/g, and 3.57 + 6.36 wg/g for Squirrel, Green, and
Montague Islands, respectively. At all sites, Mya arenaria contained the highest
concentrations of alkanes of all species sampled. Rarely did any of the values for aromatic
analytes exceed the MDL. In all areas, a few samples had naphthalene concentrations slightly
above MDL. At Squirrel Island, one sample had a measurement for methylated naphthalene
above MDL and one sample had a measurement for biphenyl that was also above MDL
(Appendix Tables A-2, A-3). Statistical analyses were not performed on the hydrocarbon data
because a majority of the reported concentrations were below the estimated MDL values.



DISCUSSION

Although foraging success was high (90% for all observations), the majority of clams
(95% of 1,126) observed were small {estimated to be <7 cm). Garshelis et al. {1986) reported
clams captured by sea otters rarely exceeded 6 cm in the Green Island site during 1980-1981.
During 1991, 79% (n = 479) of the clams captured at Green Island were estimated to be <5
cm, 20% ranged from >5-<7 cm, and none were estimated to be greater than 9 cm. Mean
shell length for clams recovered in the dredge samples in the Green Island area ranged from
33tw04.7cm.

Dive duration and surface intervals between dives were variable for individuals but
significantly different depending on the type of prey captured. Individual animals, water
depth, geographic location and food item all contribute to variation in duration of foraging
dives (Estes et al. 1981; Garshelis 1983). Sea otters at Squirrel, Green, and Montague islands
foraged on the same principal species in 1991 as were observed in previous years (Calkins
1978: Garshelis et al. 1986; Johnson 1987) suggesting there has been no detectable shift in
prey composition over time or as a resuit of shoreline oiling at these study sites. Clams,
mussels and crabs were the primary prey of sea otters at all sites, however, there were
differences in the proportion with which these prey were captured among sites. Differences in
the proportions of prey type captured by sea otters among sites may have been influenced by
the proportion of unidentified prey within each site (Table 3) or by variation in prey
availability within each site. There was no replication of treatment types (heavy oil, moderate
oil, and no oil), therefore we have no measure of natural variation within each treatment.

Prey composition determined from scat contents also indicated mussels, clams, and
crabs to be important prey of sea otters. Sea otters haul out most frequently during the winter
in Prince William Sound; therefore, these data primarily represent the overwinter diet near
Green Island (Johnson 1987; VanBlaricom 1988). Johnson (1987) examined 3,275 scat in the
Green Island site during 1974-1984 and found 58, 34, 36, and 16% of the scat contained
clams, mussels, crabs, and other species, respectively. In our sample from the same region,
we observed mussels most frequently (60%). Whether the observed differences reflect changes
in prey use over time, changes in the ratio of adults and juveniles using the haul-out through
time, or variation in scat content between observation periods is unknown.

Determination of sea otter prey composition through visual observation or scat analysis
can yield different results; both methods have inherent biases. Prey composition based on
visual observations is biased toward: 1) prey captured from near-shore areas, 2) larger prey
items (greater than the paw size of the animal), and 3) prey captured during daylight hours.
Prey composition based on scat analysis is biased against larger prey where no hard parts are
ingested. Scat analysis also cannot reveal potentlal variation in diet between adult and juvenile
or male and female oiters,

Adult sea otters foraged primarily on species found in the subtidal, whereas juveniles
had a higher proportion of an intertidal species, the mussel, in their diet based on visual
observation. Johnson (1987) also reported dietary differences between adult (19% mussel and
59% clam) and juvenile (63% mussel and 16% clam) sea otters at Green Island during 1974-
1984. In California, Estes et al. (1981) found that juveniles commonly foraged in water
ranging from 1 to 2 fathoms while adults nearly always foraged in deeper water. Mussels can
easily be obtained by foraging sea otters because they occur intertidal and require little effort to
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capture (Estes et al. 1981; VanBlaricom 1988). Mean dive intervals for mussels were shorter
than those recorded for other prey. However, mussels are less valuable calorically than other
sea otter prey (Garshelis 1983).

The presentation and discussion of hydrocarbon data which are quantitatively less than
the calculated MDL for each hydrocarbon are controversial (Rhodes 1981, Berthouex 1993).
MDLs are statistical values obtained from replicate analyses of samples with known quantities of
the compound of interest. In the literature, hydrocarbon concentrations which fall below the
MDL are presented in various ways: as “trace”, “not detected (ND)”, “<MDL”, zero, or some
incremental number between zero and the MDL. Alternate strategies, which include simply
presenting the measured concentration regardless of its relationship to the MDL, presentation of
both the measured concentration and the MDL (our choice), or giving the measured
concentration followed by a statistical estimate of its precision, are considered superior
(Berthouex 1993, Gilbert 1987). These methods prevent the discarding of useful information
which oceurs with the former methods, all of which censor some of the data.

Mean total aromatic and UCM concentrations in intertidal mussel tissue collected at our
study site on Green Island during 1989 were 2,566 ng/g (£ 853) and 171.4 nglg (£ 58.6),
respectively (Andres and Cody {MS)). These values are as much as 40 times greater than the
mean concentrations we observed in the subtidal clam tissue at Green Island sampled in 1991.
Unforwnately, no intertidal mussels were collected in 1991 to assess the persistence of
hydrocarbons in the mussel tissues at the Green Island site. Andres and Cody (MS) also
reported hydrocarbon concentrations in mussel tissue of 82 ng/g (£ 21) and 7.4 uglg (+1.7)
for total aromatic and UCM, respectively, from our Montague Island study site; aromatic and
UCM concentrations were lower in the subtidal bivalve tissue collected in 1991 (<MDL for
aromatic, 4.16+7.38 ug/g for UCM). Other sites in Prince William Sound were sampled
annually (1989-1992) and, at some sites, mussel tissue and the underlying sediments
consistently contained high concentrations (up to 50 parts per million) of total aromatic
hydrocarbons (Babcock et al. 1993; Rounds et al. 1993). In this study the elevated
hydrocarbon concentrations measured in Mya arenaria with respect to the other species
sampled are most likely due to the fact that Mya arenaria is a detritus feeder while the other
species are filter feeders.

Juvenile sea otters foraged on mussels to a greater extent than adults. However,
individual adults and juveniles may specialize on only a few species, some of which occur in
the intertidal (Ralls et al. 1988; Riedman and Estes 1990). Therefore, juveniles and individual
adults specializing in intertidal species could have a higher probability of encountering
hydrocarbon contamination in their prey than individuals foraging in the subtidal regions.

CONCLUSIONS

Sea otter foraging success, in terms of the percentage of successful dives or mean
number of prey items captured per dive, was not affected in the oiled area two years post-spill.
Prey composition (primarily clam, mussel, and crab) was similar among oiled and non-oiled
study sites and to pre-spill data from the western Prince William Sound region. Adult sea
otters foraged primarily in the subtidal region, while juveniles foraged more frequently
intertidally. Tissues of subtidal bivalve prey tested for hydrocarbon content did not appear to

8



differ regardless of the degree of shoreline oiling. Mussel tissue sampled 1989-1992 in the
intertidal regions exhibited, in site specific areas, hydrocarbon concentrations similar to crude
oil {Babcock et al. 1993). Contamination of mussels and other intertidal prey species may be of
concern for juvenile sea otters and for aduits specializing in the use of intertidal prey.
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Table 1. Prey type. size class, proportion of successful dives, and mean number of prey
retrieved per dive estimated for sea otters (Enhavdra lutris) at three sites in western
Prince Wiiliam Sound, Alaska, during April-July 1991.

Prey Size Squirrel Green Montague
type class (cm) Island Island Island
Clam <5 . 63% 79% 49%
=5 <7 28% 20% 46%
7 <9 | 8% 1% 5%
>0 < 12 1% 0% 0%
>12 <1% 0% 0%
(n = 296) (n = 479) {n = 351)
Mussel <5 100% 100% 100%
(n = 142) (n = 159) (n = 53)
Crab <5 18% 21% 43%
>5 <7 43% 1% : 52%
27 <9 30% 7% 5%
>9 <12 7% 0% 0%
>12 2% 0% 0%
All Prey* <5 63% 79% 49%
>5 <7 23% 17% 42%
>7 <9 10% 4% 8%
>9 <12 3% <1% <1%
>12 1% 0% 1%
(n = 598) (n = 690) (n = 579)
Mean number of prey per dive® 1.2 1.0 1.3
Percentage of successful dives 87% 92 % 90%

®* Tncludes clams, mussels, crab, and all other prey identified as to size class.
® Dives resulting in capture of mussels were excluded for this analysis due to the difficulty in
obtaining accurate counts on a per dive basis.
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Tabie 3. Composition of sea oter (Enhydra lutris) prey determined by visual observation at
three sites in western Prince William Sound, Alaska, during April-July 1991.

Squirrel Is. (%) Green Is. (%) Montague Is. (%)

Clam® 34 61 44
Mya spp. 2 - 3
Protothaca staminea ' 3 5 <1
Saxidomus giganteus : 21 20 9
Tresus capax <1 <1 <1
Unknown Clams 73 75 87

Mussel® 17 20 7
Mpytilus edulis 100 100 100

Crab® 11 2 i4
Telmessus spp. 46 27 72
Unknown Crabs 54 73 28

Other 5 4 4
Balanus spp. 3 12 -
Chlamys spp. - - 6
Clinocardium spp. 21 3 33
Cucumaria spp. _ 5 - -
Echiurus echiurus 3 67 12
Notoacmea spp. 3 - -
Octopus spp. 3 - 3
Pisaster ochraceus 47 12 39
Posodesmus macrochisma - . 3 -
Pycnopodia helianthoides 3 - -
Strongylocentrotus spp. 10 - 3
Chiton {class Polyplacophora) 3 - -
Tunicate (class Ascidiacea) - 3 3

Unknown prey 33 12 30

" Aduits differed in the proportion of dives retrieving clam (P = 0.01), crab (P = 0.03), and
mussel (P = 0.03) among study areas.
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Table 5.  Size class means for bivalves collected subtidally near Squirrel (oiled), Green
(oiled), and Montague (non-oiled) islands in western Prince William Sound, Alaska,

summer 1991,

Sample location and Mean shell Mean wet meat
species sampled length (mm) mass (g) N

Squirrel Island

Humilaria kennerleyi 46 7.8

Mpya arenatia 41 4.4

Protothaca staminea 44 10.0

Saxidomas giganteus 51 14.6 11
Serripes groenlandicus 56 16.2 1
Site mean + SD 47 + 174 11.2 + 6.1 25
Green Island

Gari california 47 0.4 4
Humilaria kennerleyi 33 2.7

Mpya arenaria 40 4.1 15
Protothaca staminea 41 3.0

Saxidomas giganteus 41 8.2

Site mean + SD 41 + 6.1 6.3 + 3.5 33
Montague Island

Gari california 49 5.5 1
Humilaria kennerleyi 52 13.7 2
Mya arenaria 48 7.1 4
Protothaca staminea 41 8.3 9
Saxidomas giganteus 33 4.0 5
Site mean + SD 42 + 7.9 7.4+ 4.0 2]
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area under the MDL curve is not a significant factor, rather the points are connected to
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Table A-1.  Method detection limits (MDLs) in ng and ng/g for aliphatic and aromatic
hydrocarbons analyzed by GERG.*"

Aliphatic hydrocarbons Aroimatic hydrocarbons
MDL MDL MDL
g ng/sw ng no/o ng ng/a

C10 124.6 95.9 NAP 29.4 22.6 IMP 37.7 29.0
Cl1 50.9 39.1 CIN - -- DIB - --
Ci2 489 37.6 C2N - - CiD - -
C13 - - C3N - - C2D - -
C14 - -- C4N -- - C3D - --
C15 101.0 77.7 1MN 32.8 25.2 FLA 8.2 6.3
Cle6 54.8 42.1 2MN 46.5 35. PYR 11.7 9.0
C17 40.8 314 2.6MN 334 25.7 CFP - -
C18 35.9 27.6 2,3,5MN 28.6 22.0 BAA 32.4 24.9
C19 16.6 12.8 BIP 19.5 15.0 CHR 24.2 18.6
C20 31.9 24.5 ANP 13.0 10.0 CIC -- -
C21 30.9 23.8 ANH 27.3 21.0 c2C - --
C22 23.3 17.9 FLU 16.3 12.5 C3C - --
C23 12.8 9.9 CIF - - c4c - --
C24 30.2 23.2 C2F - - BBF 25.5 19.6
C25 35.9 27.6 C3F - - BLF 24.9 19.1
C26 31.8 24.5 ANT 11.8 9.1 BEF 25.2 19.4
27 26.4 20.3 PHE 14.3 11.0 BAP 28.1 21.6
C28 25.0 19.2 Cip - - PER 12.9 2.9
C29 46.1 35.5 c2p - - IDE 20.4 22.6
C30 30.1 231 C3P - -- DBN 257 19.8
C31 - - - C4P -- - BEQ 20.0 15.4
C32 48.9 37.6 ’

C33 44.9 34.6

C34 - --

PRI 61.7 47.5

PHY - -
UCM - --

“ ng/g are on a d™Y weight basis.

® Abbreviations: C,, through C,,: n-alkanes (the subscript represents the number of carbon atoms}; PRI
pristane; PHY: phytane; UCM: unresolved complex mixture; NAP; naphthalene; CIN: Cl-naphthalene;
C2N: C2-naphthalene; C3N: C3-naphthaiene; C4N: C4-naphihalene; IMN: L-methylnaphthatene; 2MN: 2-
methyinaphthalene; 2,6MN: 2,6-dimethylnaphthalene; 2.3,5MN: 2.3,5rimethylnaphthalene; BIP: biphenyl;
ANP: acenaphthylene; ANH: acenaphthene; FLU: fluorene; C1F: Cl-fluorene; C2F: C2-fluorene; C3F:
C3-fluorene; ANT: anthracene; PHE: phenanthrene; C1P: Cl-phenanthrene; C2P: C2-phenanthrene; C3P:
C3-phenanthrene; C4P: C4-phenanthrene; IMP: 1-methyiphenanthrene; DIB: dibenzothiophene; C1D: Cl-
dibenzothiopheng; C2D: C2-dibenzothiophene; C3D: C3-dibenzothiophene; FLA: fluoranthene; PYR:
pyrene; CEP: methyl fluoranthene-pyrene; BAA: benz(a)anthracene; CHR: chrysene; C1C: Cl-chrysene;
C2C: C2-chrysene; C3C: C3-chrysene; C4C: Cd-chrysene; BBF: benzo(b)fluoranthene; BKF:
benzo(k)flnoranthene; BEP: benzo{e)pyrene; BAP: benzo(a)pyrene; PER: perylene; IDE: ideno(1,2,3-
cdypyrene; DBN: dibenzo(a,h)anthracene; BEQ: benzo(g,h,i)perylene.,
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Species Lab Sample

1D wt.’ C10 Cil C12 C13 C14 C15 Cl16 Ci7 PRI _CI8 PHY Cl19 CX C21 C22
PS 26898 1.46 0.0 14.97 6.15 3826 1532 23215 2649 219 17.8 132 105 118 168 4.6 352
PS 29899 1.21 0.0 20.26 0.0 53.47 0.0 41.65 2748 264 21.0 165 7.6 182 325 569 558
PS 29900 1.04 0.0 6.11 563 42.36 6.77 6592 2566 258 18.0 14.2 58 10.8 143 1742 282
PS 29901 1.05 5.9 13.63 0.0 8457 16.31 57.67 30.31 264 18.0 16.3 6.3 11,1 138.0 888 52.2
SG 29869 104 0.0 27.66 11.12 92,16 17.79 11537 5096 385 132 188 7.9 16,1 231 184 67.8
SG 29870 1.01 0.0 0.0 895 118,79 28.73 366.82 5517 46.1 232 16.1 83 1.1 193 12.8 68.7
SG 29871 L.03 0.0 26.56  11.49 67.02 22.69 231.87 4027 333 125 13.9 7.7 10,1 150 11.5 452
SG 29872 1.08 0.0 26.84 8.47 8409 13.68 15574 3327 354 158 10.2 8.1 8.1 110 9.5 434

Montague Island

GC 29914 1.06 53.12 66.24 16.77 69.24 20.33 11543 39.07 169.9 7.2 115 6.9 9.9 121 121 363
HK 29908 1.1 0.0 7.15 999 61.88 268 5253 3777 28.1 244 195 7.5 172 216 199 492
HK 29909 1.11 0.0 6.46 492 9647 2544 6351 4684 350 200 138 5.5 1.2 159 114 43.5
MA 29841 1.08 0.0 17.99 1553 71.64 18.6  38.02 2494 284 184 267 7.3 189 357 312 741
MA 29842 1.08 0.0 24.81 1532 7323 173 4754 2747 284 177 287 11.5 218 361 362 708
MA 29843 1.12 0.0 16.92 1438 50.17 28.66 4186 2416 21.8 11.2 21.1 79 17.6 293 242 56.6
MA 29844 1.04 0.0 0.0 15.73 5106 16,11  5t.16  26.02 156 6.7 240 161 141 31.8 234 785
PS 20884 122 0.0 26,47 1582 8346 1479 59.72 405 29.1 152 244 7.2 194 284 218 563
PS 29885 1.19 0.0 28.29 838 5529 13.31 144,69 4011 279 189 238 IL.5 152 239 182 478
PS 29886 1.04 0.0 20,75  20.26 5109 16.3 67.49 4280 278 191 220 1.7 19,0 31.9 29.9 573
PS 29887 1.18 0.0 35.75 104 47.7 14.95 160.1 3644 214 486 21.4 1.7 133 247 179  46.6
PS 20888 1.25 0.0 46.25 7.93 5703 2299 1736 39.57 266 216 19.8 126 133 225 6.3 464
PS 29889 1.08 0.0 38.61 12,29 86,03 2385 86.03 56.04 471 315 383 143 3134 417 365 760
PS 29890 1.33 0.0 40,11 i8.3% 7111 17.92 824 60,02 421 247 238 113 148 207 144 394
PS 29891 1.2 0.0 20,21 13,74 59.16 1857 8537 40.5 320 318 211 11,7 143 214 163 387
PS 29892 1.2 0.0 46.92 18.42 59,15 23.25 240.04 5054 354 279 285 223 199 325 244 494
SG 29864 1.01 0.0 36.2 10.3 61.1 22.5 1439 42.1 359 106 19.1 65 167 187 158 49.0
SG 29865 1.08 0.0 25.81 7.47 6512 198 15488 4658 363 17.7 120 102 7.9 133 93 453
SG 29866 1.03 0.0 22 88 802 7117 15.84 13267 4233 378 144 123 8.6 87 150 7.8 47.0
SG 29867 1.04 0.0 45.5 10.32  72.63 19.09 9739 41.06 385 50 189 56 135 188 17.0 513
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